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The silylene Si[(NCH2But)2C6H4-1,2] 1 inserts into the Li–Si
bond of Li[Si(SiMe3)3](thf)3 to afford the new silyllithium
compound Li[(1)Si(SiMe3)3](thf)2 2, whereas 1 with
K[N(SiMe3)2] yields the amidopotassium compound
K[N(SiMe3){(1)(SiMe3)}](thf)x [x = 0 (3a) or 3 (3b)]; the X-
ray structures of the crystalline mononuclear complex 2 and
the polymeric aggregate 3a are reported, and NMR spectra
show that in solution 2 is in equilibrium with its factors.

We report the first examples of reactions of a divalent, two-
coordinate group 14 element compound EX2, which with an
anionic reagent MXA yield four-coordinate E-atom adducts. For
the present, they relate to systems in which EX2 is the thermally
stable silylene 11 and MXA is Li[Si(SiMe3)3](thf)3 A or
K[N(SiMe3)2]. Although these reactions took place under mild
conditions, their outcome was different (Scheme 1). Thus, the
1+1-adduct was the product of insertion in the former case, but
a rearranged product in the latter. They were isolated as (i) the
crystalline, mononuclear bis(thf)[(sisyl)silyl]lithium complex
2; and (ii) the solid bis(thf)potassium amide 3, which upon
recrystallisation gave the polymeric neutral donor-free po-
tassium amide 3a and the tris(thf) complex 3b. The molecular
structures of 2, 3a and 3b have been determined;‡ discussion of
3b is deferred to the full paper, as is the formation of the Li
analogue of 3 from Li[N(SiMe3)2] and 1.

Each of the yellow (2) or colourless (3 and 3b) complexes
gave satisfactory microanalyses. The EI-mass spectra of 3 and
3a were identical and, as for 2, the major m/z peaks
corresponded to the appropriate fragments: [anion]+ and [anion
2 But]+.

In solution, the lithium complex 2 was shown to be in
equilibrium with its precursors, as demonstrated particularly
clearly by VT 29Si{1H}-NMR spectra. Thus, dissociation was
complete at ambient temperature, but was negligible at 213 K;
a 1J(29Si7Li) was not observed, probably due to the fast
exchange process. Complex 3b retained its structural integrity
at 298 K. The data, with those for 1,1 Li[Si(SiMe3)3](thf)3,2

Li[N(SiMe3){Si(SiMe3)3}]3 B and Li[Si(Ph)(NEt2)2](thf)3,4 are
shown in Table 1.

Complex 2 (Fig. 1) has the lithium atom in a three-coordinate,
distorted trigonal-planar environment. The silyl anion is
pyramidal at the Si(1) atom with respect to its contiguous Si(2),
N(1) and N(2) atoms; the sum of the angles subtended by these
three neighbouring atoms is low, 295.4°, as a consequence of
the small bite angle of the adjacent chelating ligand; cf. 307.2°
in Li[Si(SiMe3)3](thf)3 A2 and 309.8° in Li[Si(Ph)(NEt2)2](thf)3
C.4 The Li–Si(1) distance of 2.609(4) Å in 2 is slightly shorter
than the 2.644(12) Å in A or 2.732(7) Å in B. The Si(1)–Si(2)
bond length of 2.493(1) in 2 is longer than the mean Sia–Siß
bond length of 2.330(2) Å in A. The mean Si–N bond length of
1.801(3) Å in 2 [1.800(4) Å in 3a] is longer than the 1.75(1) Å
in 1, and the N(1)–Si(1)–N(2) bond angle of 87.25(8)° is
slightly more acute than the 88.2(1)° in 1, or the 88.15(6)° in
3a.

The potassium amide 3a comprises mononuclear units (Fig.
2), each linked to its neighbours by close K···CA(17)H3 [3.268(2)
Å] and K···h3-C6H4 [mean K···CA(o, m, m’) 3.17 Å] contacts
(Fig. 3). Similar intermolecular contacts are known in various
potassium amides and alkyls.5 Associated with K···CA(17)H3 is

† No reprints available.

Scheme 1 Synthesis of the alkali metal complexes 2, 3, 3a and 3b. Reagents
and conditions: i, [Li{Si(SiMe3)3}(thf)3], C6H14, 230 °C; ii, 1

2

[KN(SiMe3)2]2, thf, 230 °C; C6H14–thf, 0 °C (3a), 225 °C (3b); iii, 3a (at
ca. 20 °C), 3b (at 225 °C) recrystallised from hexane–thf solution.

Table 1 29Si NMR spectroscopic chemical shifts for 1–3 and related
compounds

d(29Si)

Complex (conditionsa) a-Si b-Si g-Si

[Li{Si(SiMe3)3}(thf)3]2 A 2189.4 25.2
1 96.2
2 60.1 29.35 24.5

[94.5 (1) 25.3]
3a 219.5 223.0 226.2
Li[N(SiMe3){Si(SiMe3)3}]3 B 27.1 249.3 218.0
Li[Si(Ph)(NEt2)2](thf)3

4 C 27.9
a Solvent (T/K): A, C7D8 (298); 1, C6D6 (298); 2, C7D8–thf (213, [298]); 3a,
C7D8–thf (298); B, C6D6 (303); C, thf (273).

Fig. 1 Crystal structure of 2.
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the narrower Si(1)–Si(2)–C(17) angle of 105.84(7)°, compared
with the mean of Si(1)–Si(2)–C(18 or 19) of 113.7(3)°. The
amido nitrogen atom N(3) is in a planar environment, the Si(1)–
N(3)–Si(3) angle of 144.40(9)° being only ca. 10° narrower
than that in the separated [N(SiPh3)2]2 anion of [Li(12-crown-
4)2][N(SiPh3)2]·thf,6 but much wider than the 136(1)° in
[K{N(SiMe3)2}(thf)2].7 The N–Si bond lengths of 1.64(1) Å in
the latter is close to the 1.6302(13) Å for Si(1)–NK in 3a, but is
significantly shorter than the Si(3)–NK bond length, 1.6739(14)
Å. The N–K distance of 2.6938(14) Å in 3a is unexceptional; cf.
2.70(2) Å in {K{N(SiMe3)2}(thf)2].7

The pathways to 2 or 3, from 1 and Li[Si(SiMe3)3](thf)3 or
K[N(SiMe3)2], probably require that in the first step the silylene
1 behaves as a nucleophile yielding the appropriate adduct

X2E+MXA (4a or 4b). Complex 2 is presumed to arise from 4a
by insertion of XA into the E–M bond, and a similar step from 4b
would yield 5. Complex 3 is believed to be formed by a final
Me3Si shift from the N to Si, either from 5 (a 1,2-shift; cf. the
transition state 6) or 4b (a 1,3-shift). Although anionic
trimethylsilyl shifts are well documented,8 this, we believe, is
the first N?Si example. Precedents for X2E+MXA adducts in
group 14 element chemistry include (i) silylene–(Ni0 or PtII)
complexes such as [Ni(1)4] and trans-[Pt{(1)Cl2}2(1)2]9 and (ii)
carbene–(MXA) complexes such as [Li{C[N(But)CHCHN-
But]}{h5-C5H2(SiMe3)3-1,2,4}]10 and [K{C[N(Pri)(CH2)3N-
Pri]}{m-N(SiMe3)2}]2,11 and (iii) stannylene–MCp complexes
such as SnCp2(m-Cp)Na from SnCp2 + NaCp.12 Alternative
EX2/MXA reactions have led to X/XA exchange as in (i) SnCp2 +

LiN(SiMe3)2 yielding Sn(Cp)[N(SiMe3)2](m-Cp)Li(pmdeta),13

and (ii) SnCp*2 + Li[CH(SiMe3)2] affording Sn[CH(SiMe3)2]2
+ LiCp*.14 Insertion reactions of 1 into O–H, C–I, GeII–N, SnII–
C, SnII–N or PbII–N bonds have been reported, as with
MA[N(SiMe3)2]2 to give MA[1{N(SiMe3)2}]2 (MA = Sn 7 or
Pb).15 The rearrangement 5? 3 cannot be due to the lability of
the anion {(1){N(SiMe3)2}]2, since it is found in 7 as a ligand.
We suggest that 3 may be favoured, at least in part, by the strong
Si–Si bond, as evident by its short [2.359(1) Å in 3a] bond
length, comparable with the av. Si–Si bond distance of 2.379 Å
in 2. However, according to bond dissociation energy data a
migration of Me3Si from nitrogen to silicon is unexpected.16

The facile dissociation of 2 is probably due to steric constraints,
consistent with the long Si–Si(SiMe3) bond of 2.493(1) Å and
the narrow N–Si–Si angles, av. 103.9(6)°.

The present results significantly extend the already sub-
stantial boundaries of silylene reaction types. From work in
progress, we anticipate that several new silicon-centred ligands
[(1)XA]2 (that in 2 being a forerunner) will become available for
use for a wide range of metals, and that the exceedingly bulky
amido ligand present in 3 will find a useful role.
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Dr A. G. Avent for the 29Si NMR spectroscopic data.

Notes and references
‡ Crystallographic data: for 2: C33H69LiN2O2Si5, M = 673.29, mono-
clinic, space group P21/n (no. 14), a = 12.8306(11), b = 18.4336(13), c =
18.7237(15) Å, b = 96.161(4)°, U = 4402.8(6) Å3, Z = 4, m = 0.19 mm21,
T = 173(2) K, 7659 unique reflections (Rint = 0.060), R1 = 0.052 for 5962
reflections with I > 2s(I), wR2 = 0.138 for all reflections.

3a: C22H44KN3Si3, M = 473.97, monoclinic, space group P21/n (no. 14),
a = 13.4645(4), b = 12.7533(3), c = 16.5858(3) Å, b = 91.759(2)°, U =
2846.7(1) Å3, Z = 4, m = 0.33 mm21, T = 173(2) K, 6689 unique
reflections (Rint = 0.044), R1 = 0.039 for 5363 reflections with I > 2s(I),
wR2 = 0.097 for all reflections.

CCDC 182/1688. See http://www.rsc.org/suppdata/cc/b0/b003833o/for
crystallographic files in .cif format.
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Fig. 2 Crystal structure of 3a.

Fig. 3 Intermolecular contacts in 3a.
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